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Abstract-Liquid crystal thermography combined with transient conduction analysis is often used to 
deduce local values of convective heat transfer coefficients. Neural networks based on the backpropagation 
algorithm have been successfully applied to predict heat transfer coefficients from a given set of exper- 
imentally obtained conditions. Performance characteristics studied on numerous network configurations 
relevant to this application indicate that a 3-&3-l arrangement yields the least errors with convergence 
improving directly with both the global learning rates and those of individual layers. Copyright ‘r> 1996 

Elsevier Science Ltd. 

1. INTRODUCTION AND BACKGROUND 

Transient heat transfer analysis is of significant prac- 
tical interest because of the large number of heating 
and cooling processes associated with industrial appli- 
cations. Components such as heat exchangers and 
boilers in power generation plants necessitate the 
knowledge of surface temperature distribution with 
respect to time. Recent experimental techniques such 
as liquid crystal thermography, used to establish the 
full-field distribution of convective heat transfer 
coefficients, require the solution of the one-dimen- 
sional transient conduction equation. Experimental 
work using this technique has been carried out for the 
determination of heat transfer coefficients in various 
geometries [l-3]. Despite advances in image pro- 
cessing [4], the large quantities of data which are 
necessary to obtain detailed distributions of heat 
transfer coefficients in complex geometries, still render 
analysis time-consuming. The aim of the present work 
is to eventually interface artificial neural networks 
with image processing techniques to provide an auto- 
mated and efficient stand-alone system. 

The recent development of powerful learning algo- 
rithms for Artificial Neural Networks (ANNs) has led 
to their use in many engineering thermo-fluid appli- 
cations. The capability of perception type multilayer 
networks to approximate any continuous function has 
been established, as in Kurkova [5] and Ito [6]. Kavak- 
lioglu and Upadhyaya [7] have used ANNs to predict 
feedwater flowrates and the thermal efficiency of key 
components of a Pressurized Water Reactor (PWR). 
Thibault and Grandjean [8] employed them to model 
three problems in heat transfer ranging from the ther- 
mocouple to correlations in natural convection. 
Further, they have also been utilized by Singh et al. 
[9] to model the response of a vibratory system and 
by Kudav rt al. [IO] to simulate steady and unsteady- 

state heat conduction. The latter is limited by the 
fact that the neural nets are trained to predict the 
temperature changes based on just one initial tem- 
perature. 

This paper reports the results of using ANNs to 
model one-dimensional transient heat conduction, for 
liquid crystal thermography (LCT). Neural networks 
were trained to predict the convective heat transfer 
coefficients at a point in a duct which is heated by the 
flow of hot air. The neural networks were trained 
on a broad range of initial temperatures and other 
parameters to cover reasonable ranges of real-life 
transient experiments. 

2. APPLICATION OF ANNs TO LIQUID CRYSTAL 

THERMOGRAPHY 

Transient wall heating involves raising the surface 
temperature of a wall from a known value to a pre- 
determined value, during some measurable period of 
time. Liquid crystals reflect colour as a function of 
temperature through the complete visible spectrum 
within the temperature range for which they are pre- 
pared, and can therefore be used to monitor the sur- 
face temperature of the test specimen. Deduction of 
convective heat transfer coefficients due to a fluid 
flowing over a surface involves the solution of the 
one dimensional transient heat conduction equation 
(without generation) together with the respective 
boundary conditions namely 
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NOMENCLATURE 

C specific heat capacity of the Greek symbols 
specimen 

: 
thermal diffusivity = k/pc 

h convective heat transfer coefficient dimensionless temperature 
k thermal conductivity of the n intermediate parameter in equation 

specimen (3). 
4 heat flux 
T temperature Subscripts 
t time lc pertains to liquid crystal 
X distance from the surface of the 0 initial conditions 

specimen. x property of the fluid. 

f hid 
temperature, 
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a learning algorithm which applies to multi-layered 
networks. This model involves supervised learning; 
hence each input pattern is presented with its cor- 
responding output pattern. Learning involves min- 
imizing the error between the expected and the actual 
network outputs. This is carried out using the Gradi- 
ent Descent method. When the complete training set 
is presented the root mean squared (r.m.s.) error is 
calculated. Training continues until the global mini- 
mum of this r.m.s. error is attained. More details of 
the backpropagation model are available in [8-lo]. 
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Fig. 1. A diagram to illustrate the transient heating of a semi- 
infinite wall. 

3. RESULTS AND DISCUSSION 

The approach adopted in this investigation was to 
model the heat transfer coefficient, h, as a function 
of three variables namely, (i) 8, the non-dimensional 
temperature, (ii) c(, the thermal diffusivity and (iii) t, 
the time. These three input networks were developed 
on NeuralWorks Professional II PlusTM, a commercial 
neural networks package developed by NeuralWare, 
Inc. [ 121. Figure 2 shows a typical three-input network 
used in this application. All these nets were trained to 
model real-life transient experiments and their train- 
ing sets were generated by an iterative solution to 
equation (2). 

Figure 1 illustrates the above situation where the 
specimen is assumed to be sufficiently thick for the 
temperature to stay constant at infinite depth. The 
exact solution of equation (1) at the surface of the 
specimen is given by equation (2), [ 111. 

T,-TO lg----= 
Tm-To 

1 -eo(l -erfJQ) (2) 

where erf(x) is the Gaussian error function and 

h*at 

R=F. 
The convective heat transfer coefficient, h, can be 
Pbtained by an iterative process which uses an esti- 
mate of h to obtain the surface temperature. The 
advantage of using neural networks for this case is 
that once trained, their prediction of the surface heat 
transfer coefficient (as a function of 8, c( and t) is very 
fast. 

The backpropagation model used in this work is 

From experimental results, a plot of h against time 
shows a curve which represents the fall in h with time 
(see Fig. 3). For each value of B there is one such 
curve which depicts the change in h with time. The 
training set comprised data taken for many different 
values of 8. in the range : 0.25 ,< Q < 0.68. This range 
for fI represents the limits of typical experimental tests. 
The maximum elapsed time for the experiment was 
set as 60 s which, again, represents a typical exper- 
imental test. For each network the test set comprised 
20 examples which did not appear in the training set, 
but which were carefully selected to span the full range 
of the training set. Figure 3 compares the actual values 
of h with the predictions of the 3-6-3-l network. 
Average errors of up to 2.7% were obtained using this 
network, while the worst-case average error of 6.5% 
was obtained from the 343-l net. 
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Fig. 2. A typical three-input backpropagation network used 
in this study. 

Fig. 3. Comparison of predictions from a 3-6-3-l network 
after 200000 iterations. * network’s predictions; + actual 

values of h (derived from simulation). 

The speed of learning was improved by invest- 
igating three different approaches : firstly, the effect of 
the number of hidden nodes was studied ; secondly, 
the global learning coefficient and momentum term of 
the whole network, as well as the learning coefficient 
of the individual layers were varied. Finally, the con- 
figuration of networks was changed. 

The tests confirmed that the networks converged 
faster with increasing number of nodes in the first 
hidden layer. However, the performance of networks 

with greater than 20 nodes in the first hidden layer 
was generally worse. This arises from the fact that too 
many nodes result in overhtting of the data and hence, 
poor generalization. It was also found that the speed 
of convergence of the networks increased with the 
global learning rates and with the learning rate of each 
individual layer. 

An alternative configuration of networks was also 
studied. Each node was connected directly to all others 
in the layers below. This has the effect of adding an 
extra bias term to each node. For networks with less 
than six nodes in the first hidden layer, the speed of 
convergence was improved by the adoption of this 
alternative configuration. However, for networks with 
seven or more nodes in the first hidden layer, this 
alternative structure did not necessarily improve con- 
vergence. 

4. CONCLUSIONS 

Artificial neural network methodology has been 
successfully applied to deduce convective heat transfer 
coefficients from experimental data using liquid crys- 
tal thermography. The technique involved the mod- 
elling of the one dimensional transient conduction 
equation together with its boundary conditions. Accu- 
racies of up to 2.7% have been obtained using the 3- 
63-1 network. The speed of learning increases 
directly with the number of units in the first hidden 
layer. It is also improved by increasing the global 
learning coefficients or the learning coefficients of indi- 
vidual layers. It has also been shown that, for this 
problem, networks with less than seven units in the 
first hidden layer learn faster when they are connected 
such that each node is directly linked to all others 
below this layer. 
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